
Administration Guide
ERP-Link Modeler

Version 5.4.0

March 2019

ERP-Link Modeler Administration Guide V5.4.0 ii

Title: ERP-Link Modeler V5.4.0 Administration Guide

© 2019 Gimmal LLC

Gimmal® is a registered trademark of Gimmal Group.
Microsoft® and SharePoint® are registered trademarks of Microsoft.

Gimmal LLC believes the information in this publication is accurate as of its publication date. The
information in this publication is provided as is and is subject to change without notice. Gimmal
LLC makes no representations or warranties of any kind with respect to the information
contained in this publication, and specifically disclaims any implied warranties of merchantability
or fitness for a particular purpose.

Use, copying, and distribution of any Gimmal software described in this publication requires an
applicable software license. For the most up-to-date listing of Gimmal product names and
information, visit www.gimmal.com. All other trademarks used herein are the property of their
respective owners.

If you have questions or comments about this publication, please email
TechnicalPublications@Gimmal.com. Be sure to identify the guide, version number, section, and
page number to which you are referring. Your comments are welcomed and appreciated.

http://www.gimmal.com/
mailto:TechnicalPublications@Gimmal.com

ERP-Link Modeler Administration Guide V5.4.0 iii

Contents

Introduction ... 1

Intended Audience ... 1

Intended Usage ... 1

Overview .. 2

About ERP-Link Objects ... 2

Installation ... 3

Configuration .. 5

Using the Modeler .. 6

Selecting the Connection to SAP System .. 6

Browsing SAP Business Objects and BAPIs .. 6

Creating Remote Function Call Filters .. 7

Browsing Tables .. 8

Searching with the Table Browser ... 9

Viewing Tables ... 9

Browsing SAP Queries ... 11

Browsing SAP Report Programs ... 11

Using the ERP-Link Business Object Designer ... 13

Creating ERP-Link Business Objects .. 13

Adding BAPI/RFC Modules to an ERP-Link Business Object ... 14

Deleting Methods from an ERP-Link Business Object ... 15

Renaming Methods and Other Elements .. 16

Binding Method Parameters and Properties ... 16

Using Structures and Tables .. 18

Understanding Documentation and IntelliSense™ 19

Using the Test Runner .. 20

Using the Table View Editor .. 22

ERP-Link Modeler Administration Guide V5.4.0 iv

Creating a Table View ... 22

Modifying a Table View ... 23

Using ERP-Link Information Objects in Your .NET Project 24

Using the ERPLink.Runtime Assembly .. 24

Performing Runtime Configuration of ERP-Link information Objects 25

Understanding Generated ERP-Link Business Object Proxy Source Code 25

Constructor with No Parameters .. 27

Constructor with SAP Credentials .. 28

Constructor with Configured ISession ... 28

Skinning the ERP-Link business object .. 28

Disposing of ERP-Link Information Object Proxies ... 29

Using ERP-Link Information Objects ... 30

ERP-Link Business Object Sample Code Fragment .. 30

Generating ERP-Link Code Snippets ... 32

Business Object Code Snippets .. 32

Table View Code Snippets... 32

SAP Query and SAP Report Code Snippets ... 33

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 1

Introduction

Gimmal delivers market-leading content governance and compliant records solutions built on
Microsoft® SharePoint®. Gimmal solutions drive user adoption and simplify information access by
making information lifecycle content management simple and transparent. This ensures consistent,
enterprise-wide compliance and proactive litigation readiness while lowering costs.

Gimmal’s ERP-Link platform includes a tool named the ERP-Link Modeler, which is used for building
.Net libraries that execute SAP functions using the Gimmal Connection Service. The libraries that are
generated allow for integration of custom solutions with SAP.

Intended Audience

This document is intended for .NET programmers and architects who are designing and
implementing a solution to connect SAP to Microsoft products. Familiarity with C# or .NET
programming and the Gimmal Connection Service is required to fully understand this document.

Intended Usage

The ERP-Link Modeler is intended to be connected to a development SAP environment for
generating code. The tool is not intended to be connected to production environments for
performing code generation. As with any custom code, the generated code should be properly
tested against a non-production environment prior to deployment for usage in a production
capacity.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 2

Overview

The ERP-Link Modeler is a standalone application that allows a developer to browse SAP objects
and function modules and create usable C# or Visual Basic.Net classes that can be used in the
developer’s project to access the functionality of an existing SAP system. This code is in the form of
a text snippet that the developer can copy and paste into a project.

ERP-Link Modeler offers a simplified approach that reuses existing SAP framework, services,
application objects, and the Microsoft .NET platform.

• No SAP-side changes required to use ERP-Link Modeler or application code generated by it
• No duplicate data store required
• No duplicate business logic required
• Reuses and reflects SAP security
• Leverages Microsoft platform technologies, including Microsoft.NET and Web Services, and

Visual Studio IntelliSense

About ERP-Link Objects

ERP-Link Modeler is a standalone program that allows a developer to easily generate ERP-Link
Objects. ERP-Link Objects are Microsoft .NET-compatible classes that can be used in your C# or
Visual Basic.NET projects to access the functionality of an existing SAP System.

The ERP-Link Modeler supports the creation of four different kinds of ERP-Link objects:

• ERP-Link business objects based on the Business Application Programming Interfaces
(BAPIs) and Remote Function Call (RFC) modules of an existing SAP System. The generated
ERP-Link business objects can then be used in C# or Visual Basic.NET projects to conveniently
access the functionality available from the SAP System, without involving the programmer with
tedious data conversion details.

• ERP-Link table view objects support the reading of SAP relational tables and presenting the
data as an ADO.NET System.Data.DataTable, or reading the data into a System.Data.DataSet.

• ERP-Link query objects support the invocation of an SAP query and the reading of the
returned data through an implementation of the ADO.NET System.Data.IDataReader interface.

• ERP-Link report objects support the invocation of SAP Report programs and the reading of
the returned data through an implementation of the ADO.NET System.Data.IDataReader
interface.

An ERP-Link object, when present in a C# or Visual Basic.NET project, will automatically generate
source code into a C# or Visual Basic.NET class, referred to as the proxy. This proxy source code is
then compiled along with any other source code files. The resulting proxy code can be called from
other parts of your projects as a straightforward .NET class.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 3

Installation

ERP-Link Modeler is distributed as a Microsoft Installer package.

1. Download the installer package from the Gimmal download site.
2. Right-click the package in Windows Explorer and select Run as Administrator.
3. Select the directory and hard drive that you want to install the product to. The default setting

is to install the software in your Program Files folder, normally found on the C: drive.
4. Click OK.
5. Navigate to the installation folder and double-click the “setup.hta” file.

The Gimmal splash screen opens.

https://gimmal1.sharepoint.com/sites/EXT-download/SitePages/Home.aspx

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 4

6. Under the Install ERP-Link section, click the Modeler link to launch the Modeler installer.

Note: To execute the ERP-Link Modeler, the following must be configured to support connecting to
an SAP environment:

• ERP-Link Connector Service. Refer to the ERP-Link V5.4.0 Installation and Administration
Guide for details on installing and configuring this product.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 5

Configuration

Once the installation is complete, the ERP-Link Modeler will require some simple configuration to
allow for communication with the Gimmal Connection Service. The ERP-Link configuration includes
a key for authorizing access to use the Connection Service. Information about creation and
management of the key can be found in the ERP-Link Administration Guide. The key that is used will
need to be loaded into the Modeler configuration file (ERPLink.iNetModeler.exe.config). This file is
typically stored in the \ProgramFiles\Gimmal\ERP-Link\Modeler file path.

The value specified in the ERP-Link configuration file needs to be set in the “value” as highlighted in
the image below.

Any changes to the key in the ERP-Link configuration must be synchronized with the Modeler config
file for it to connect properly.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 6

Using the Modeler

You can perform the following tasks with the ERP-Link Modeler.

Selecting the Connection to SAP System

You must establish a connection to an existing SAP System using the Gimmal Connection Service.
Please refer to the ERP-Link V5.4.0 Installation and Administration Guide for instructions to set up
the connection.

1. To launch the Connection Browser, go to the Start menu under Windows and select ERP-
Link Modeler.

Figure 1 Connection Browser tool window

2. Browse the SAP systems by clicking the Add SAP System button in the toolbar.
3. Enter appropriate configuration information to establish a connection to an existing SAP

system using the Gimmal Connection Service.

Browsing SAP Business Objects and BAPIs

When an SAP system has been configured properly, it appears as a tree node in the Connection
Browser window. The tree node can be expanded to show its contents.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 7

Figure 2 SAP Business Objects and BAPIs in the Connection Browser Dialog Box

An SAP system provides remotely callable services known as BAPIs. The BAPIs are grouped into SAP
business objects based on their functional area. The BAPIs of a particular SAP system can be browsed
by expanding the SAP business objects node of an SAP system in the Connection Browser.

Creating Remote Function Call Filters

If you already know part of, or the entire, name of a BAPI or a Remote Function Call (RFC) module,
you can create a filter.

1. Right-click on the SAP system in the Connection Browser and choose Add RFC Filter.
2. Enter a descriptive name for the filter and the name of the group and function you are

interested in searching for. Filter searches are always case-insensitive (that is, specifying a will
match both a and A).

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 8

Figure 3 Add RFC Filter Settings Dialog Box

Note

Wildcards can be used in the search. The asterisk (‘*’) character is used to indicate match
everything. For instance, entering the string Z_Test* in the Functions field would match the RFC
modules Z_TEST_FUNCTION and Z_TEST_READ_TABLE– but not Z_GET_USER_DETAILS.

After either browsing the SAP business objects or running a filter, you will obtain a list of remotely
callable functions, consisting of all BAPIs and RFC modules that match the filter criteria. Their use
will be explained in the next section.

Browsing Tables

The Connection Browser provides tools to browse the tables on an SAP system.

1. Display a Browsing Tables dialog box by right-clicking on an SAP system in the Connection
Browser.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 9

2. Select Browse Tables. A dialog box displays to specify search criteria to browse the
relational tables of that SAP system.

Figure 4 Browsing Tables Dialog Box

3. Enter the criteria and click the Browse button. Lengthy browse results can be paged through
with the Back and Forward buttons as appropriate.

4. Save frequently performed table browses by clicking the Save button. The saved Browse by
table name appears under the SAP system in the Connection Browser.

Searching with the Table Browser

Here are some tips for searching with the table browser:

• Browse by table name: Searches by the prefix of the names of SAP tables to display a list of
those tables. For example, entering KNA results in the list of tables whose names begin with
KNA.

• Browse by table description: Searches tables by their descriptions. For example, entering
Customer will result in a list of tables whose descriptions contain the string Customer.

• Browse using search criteria: Displays an Options button. Click it to enter SAP SQL search criteria.

Viewing Tables

After you find the SAP tables that you are interested in, you can view the contents of a particular
SAP table by double-clicking on it. A Viewing table dialog box displays.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 10

Figure 5 Table Viewer Example

• Use the Back, Forward, and Browse buttons to navigate through the table.
• Click the Save button to save the table view under the SAP System in the Connection Browser.
• Click the Save Data button to save the entire contents of the viewed table into a user-specified

.xml file. This .xml file can then be imported into any application that can handle .xml files.

Note

Saving large tables might take a long time.

• Click the Columns button to display the Select Table Columns dialog box. This dialog lets the
user choose the columns that are of interest.

Note

Due to technical limitations, the total width of all table rows retrieved by the Table Viewer can at
most be 512 bytes wide. If this limit is exceeded, the Table Viewer will display the Table View
Column Selection dialog box and prompt you to select columns with a total column width of
512 bytes or less.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 11

• Click the Options button to display a dialog box to enter SAP SQL statements to limit the result
set of the search.

Browsing SAP Queries

The Connection Browser displays the Queries available on a particular SAP system under the SAP
Queries node.

Figure 6 Browsing SAP Queries

SAP queries are grouped into user groups. User groups can be part of a global or local workspace;
global user groups are indicated with an icon with a small blue globe. Each user group node
contains one or more SAP queries, which in turn could contain one or more variants.

You can test a query or a variant from ERP-Link Modeler:

1. Right-click on the query or variant and select Test Query from the context menu.
2. Enter an optional number of rows.
3. Click the Execute button to invoke the selected SAP Query and display the returned data in

the dialog.

Browsing SAP Report Programs

The Connection Browser can display SAP Report Programs.

Expand the SAP Reports node to display the list of available SAP Report Programs.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 12

Figure 7 List of Available SAP Report Programs

Unlike queries, there are no User Groups or workspaces. SAP Report programs do, however, support
variants in the same way that SAP queries do.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 13

Using the ERP-Link Business Object Designer

You can use the ERP-Link Business Object Designer to design ERP-Link business objects intended to
be used to generate a code snippet.

Creating ERP-Link Business Objects

You can add ERP-Link business objects to your Visual C# or Visual Basic.NET projects by modeling
the desired objects in the ERP-Link Modeler and then generating a code file that can be imported
into the project in Visual Studio.

1. Select File and then New from the menu in the ERP-Link modeler.
2. Select ERP-Link Business Object from the template pane.

Figure 8 ERP-Link Template Chooser

3. Click Cancel in the Create New ERP-Link Object dialog box and a new, empty, ERP-Link
business object displays in the designer window.

Note

Do not make modifications to the code in the proxy (*.ibx) file because the changes will
instantly be lost whenever changes are made to the iNet business object.

The designer window consists of three areas.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 14

Figure 9 ERP-Link Business Object Designer

• The top area displays the elements of the business object being designed. A business object
element is one of the following:

o Methods, which correspond to BAPIs and/or RFC modules on an SAP system. Methods
may have zero or more parameters

o Properties, which can optionally be used to bind to parameters to improve
performance

o Structures, which are SAP structures and their fields

• The middle area, Test Runs, is where saved test runs from the Test Runner are presented (see
Using the Test Runner). Launch saved test runs by double-clicking on them.

• The bottom area is the Documentation field. This field can be used to associate Rich Text
documentation (including pictures and simple tables) with a particular method, parameter,
property, structure, field, or column.

Adding BAPI/RFC Modules to an ERP-Link Business Object

To add a BAPI or RFC module to an ERP-Link business object, the BAPI/RFC module must first be
visible in the Connection Browser, either by navigating the SAP business object hierarchy to the

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 15

appropriate BAPI or by using an appropriate filter. In the figure below, a filter to find all RFC
modules whose names begin with RFC_READ_.

When the BAPI/RFC module is visible, click it and drag and drop it onto the Business Object
Designer window. In our example, the RFC called RFC_READ_TABLE was dragged and dropped. The
Business Object Designer will then look like the following figure:

Figure 10 ERP-Link Business Object Designer Object with an Added Method

RFC_READ_TABLE is now the only method of the business object ERP-Link_BusinessObject1. You can
add more methods by dragging and dropping them from the Connection Browser.

Note

It is not possible to add BAPIs/RFC modules from two or more separate SAP systems into the
same ERP-Link business object, since it can only be targeted at exactly one SAP system. Instead,
you can create a separate ERP-Link business object for each SAP system desired for
communication. Alternatively, you can switch the targeted SAP system for the ERP-Link
business object by changing its SapSystem property.

Deleting Methods from an ERP-Link Business Object

To delete a method from a business object in the Business Object Designer,

• Select the method and press the Delete key.
or

• Right-click on the method and select the Delete menu item.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 16

Renaming Methods and Other Elements

You can rename any method, method parameter, property, structure, table, structure field, or table
column in the Business Object Designer.

• Select the element and press the F2 key on the keyboard.
or

• Right-clicking on the element and selecting Rename. The new name can then be typed in,
followed by Enter.

Binding Method Parameters and Properties

By default, each BAPI/RFC module that is copied onto the ERP-Link Business Object Designer has all
of its parameters replicated into the ERP-Link business object. These parameters can be renamed to
suit the developer’s needs.

However, in some cases, the parameters might always have the same value, or they might be
optional and therefore should not appear to the .NET developer at all. Controlling these aspects of a
parameter is called binding the parameter.

1. Locate the parameter in the Business Object Designer.

Figure 11 Parameter Binding Dialog Box

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 17

2. To bind a selected parameter, right-click on it and select Edit Binding. The Editing
Parameter dialog box displays.

Figure 12 Editing Parameter Dialog Box

3. Edit the parameter following these guidelines.

o In some situations, commonly used parameters can be bound to a .NET property on
the generated proxy, for a slight performance gain. To bind a parameter to a property,
choose Bind to business object property. A list of available, compatible properties
will be displayed, one of which must be chosen for the binding to complete. New
properties can be added to the business object by entering their name in the text field,
then clicking Add Property.

o If the proxy code should always pass a constant value to the BAPI/RFC module, select
Bind to a constant value and then specify the desired constant value. The parameter
will disappear from the generated proxy code because its value will always be constant.

o If a BAPI/RFC module parameter is optional, and the requirement is to simplify the
method interface by hiding that parameter from the .NET developer, select Ignore
parameter. The parameter will disappear from the generated proxy code.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 18

Using Structures and Tables

BAPI/RFC modules might have parameters that are structures or tables (structured types). Special
functions are available for the management of structured types and their component fields or
columns.

Sometimes, SAP structures or tables contain fields that are optional. Such fields can be made visible
or invisible by right-clicking on them and toggling the Visible selection. Marking a field or column
invisible causes it to disappear from the generated proxy source code.

When a method parameter is added to the ERP-Link Business Object Designer and that parameter
has a structured type, a corresponding structured type is generated in the ERP-Link business object
and the C# or VB.NET proxy. This generated structured type needs a name; by default, the name is
generated by prefixing the original SAP name of the structure with the name of the method using
the parameter. For example, if a parameter of the BAPI Z_TEST_00 has the structured type
TEST_STRUCT, then the resulting business object type name will be Z_TEST_00_TEST_STRUCT. These
concatenations avoid unintentional conflicts between two methods using the same structure or
table type.

If two BAPI/RFC method parameters are required to share the same structured type,

1. Select the parameter, right-click the selection, and select Edit Binding from the Parameter
Type menu.

2. All compatible structured types are listed. Pick the one you want to associate with the
parameter in question and then click OK.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 19

Understanding Documentation and IntelliSense™

Whenever an ERP-Link business object element is selected, the Visual Studio property grid is
updated to reflect the properties of that particular element. The Summary property, which accepts
any text string, is common to most elements. This text string is generated in .xml-based comments
that are then converted by Visual Studio into IntelliSense ToolTips. The .NET developer can edit the
ToolTips after generating the snippet.

Most elements also allow the addition of free-form, rich text documentation in the Documentation
pane at the bottom of the business object Designer.

• To add documentation, copy it to the clipboard from a rich text program such as Microsoft
Word or Windows WordPad and paste it into the Documentation pane.

Figure 13 Addition of Documentation to a Business Object Element

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 20

Using the Test Runner

Sometimes it is convenient to be able to test a BAPI/RFC module without having to switch over to
the SAP development environment. The ERP-Link Modeler provides functionality called the Test
Runner that allows a user to select a method, specify parameter values, and execute the
corresponding BAP/RFC module on the SAP system from inside of Visual Studio. To do this,

1. Select the desired method, right-click on it, and choose Test Method. The Test Runner
window will appear.

Figure 14 Test Runner Dialog Box

2. You can perform the following tasks with this window.

• Enter simple parameter values by typing them into the appropriate text fields in the
Input values pane.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 21

• To enter data into structures or tables, click the corresponding Edit button. A data grid
will appear, allowing data entry in a tabular manner.

Figure 15 Test Runner Output Dialog Box

• You can save the values. Enter a descriptive name in the Test Name field and click the
Save button. The test values are saved in a test run and are available for quick reuse later
by double clicking in the Test runs panel of the business object Designer.

• When all input parameters have been entered, click the Execute button. A connection is
established with the SAP system and the specified BAPI/RFC module is executed.

• Any returned values are visible in the Output values pane. To view structures or tables,
click the corresponding Edit button.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 22

Using the Table View Editor

The ERP-Link Modeler provides an information object designer called the Table View Editor. This
editor lets you review and rename individual columns in a Table View. The resulting information
object, an ERP-Link TableView, can be called from .NET code.

Creating a Table View

Add ERP-Link Table Views to your Visual C# or Visual Basic.NET projects by following these steps.

1. Select File and then New. The Create New ERP-Link Object dialog box appears.

Figure 16 Adding a New Table View

2. Select the ERP-Link Table View Designer item in the Templates pane.
3. Click OK. A new empty ERP-Link Table View will be added as a file to your project and

automatically opened in a Table View Editor.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 23

Figure 17 Table View Editor Window

Modifying a Table View

The Table View can be modified as follows:

• After a Table View is available in a designer, you can rename the individual columns of
the Table View.

• You can change properties on the Table View itself in the Visual Studio Properties
window.

• As you make changes in the Table View, the generated C# or Visual Basic.NET class
changes to match those changes.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 24

Using ERP-Link Information Objects in Your .NET Project

After you are satisfied with the designed ERP-Link information object, you can start using it to
create a .NET assembly. This section will cover the programming aspects of using ERP-Link
information objects in a .NET project.

Using the ERPLink.Runtime Assembly

All ERP-Link information objects require that you add a reference to a .NET assembly called
ERPLink.Runtime , which implements the runtime connectivity to the SAP system. This assembly is
installed by the ERP-Link Modeler.

In addition, redistributable merge modules for the 32-bit x86 and 64-bit AMD64 architectures, as
well as a copy of the ERPLink.Runtime assembly, are installed in c:\Program Files\ERP-Link\Modeler.

ERPLink.Runtime is a thin abstraction layer that isolates the .NET programmer from implementation
details of the different supported versions of ERP-Link SAP connections. By using this abstraction
layer, .NET developers can use the same code against any version of services under any version of
the .NET runtime without having to recompile their code.

A central class in ERPLink.Runtime is the ConnectionProviderService class. The ConnectTo (string
connectionString) method of this class is the way in which a connection to an SAP system is
established. The method has a return type of ISession. ISessions are used by ERP-Link information
objects to communicate with SAP systems.

ERPLink.Runtime connection strings adhere to the following syntax:

PROVIDER=<prov>;SERVER=<server>;POOLID=<pool ID>

Where:

• The <prov> fragment identifies the version of the ERP-Link connection being used The
ERP-Link Modeler 5.0 supports the ERP-Link Connection Service 3.1 and the Gimmal
Connection Service 5.0. The <server> fragment identifies the name or IP address of the
computer hosting the ERP-Link Connection Service server (such as localhost or 127.0.0.1).

• The <pool ID> fragment identifies the ERP-Link Connection Service connection pool to
be used.

Example: the connection string

PROVIDER=iNet.CS3;SERVER=localhost;POOLID=42

specifies use pool number 42 of the iNet.CS3 server on localhost to communicate with SAP.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 25

Performing Runtime Configuration of ERP-Link information Objects

At runtime; that is, after deployment, ERP-Link information objects can retrieve configuration
information about which connection server and pool to use from your project’s app.config or
web.config file.

You can add the appropriate kind of configuration file and edit it to contain the following .xml
elements:

<configuration>

<appSettings>

<add key="BObject.iNet_BusinessObject1"
value="PROVIDER=iNet.CS3;SERVER=localhost;POOLID=01"/>

</appSettings>

</configuration>

The key should be the full .NET type name of the designed information object, including its
namespace. Change the localhost and “01” to the appropriate values for the runtime environment of
the project.

At runtime, the information object will locate its configuration from the appSettings section and use
the retrieved connection string as a parameter to the ConnectionProviderService.ConnectTo()
method described above.

Understanding Generated ERP-Link Business Object Proxy Source Code

This section discusses the high-level structure of the generated proxy code for a sample ERP-Link
business object. The sample business object shown in Figure 18, below, has a single method
targeted at the SAP standard RFC RFC_READ_TABLE. Notice that the method name and associated
table types have been renamed. The ERP-Link business object will be used to read the table columns
and the descriptions of these columns from an SAP system.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 26

Figure 18 ERP-Link Business Object Method with Some Parameters Disabled

Notice also that three of the parameters of RFC_READ_TABLE, DELIMITER, NO_DATA, and OPTIONS
are disabled. These parameters have been bound to nothing, or ignored, and will not generate
corresponding .NET method parameters.

In the C# language, the proxy code that is generated will look like the following output (edited for
readability and brevity):

public partial class iNet_BusinessObject1 : ProxyInfoObject {

public iNet_BusinessObject1() {

}

public iNet_BusinessObject1(ERPLink.Runtime.SapCredentials credentials)

: base(credentials) {

}

public iNet_BusinessObject1(ERPLink.Runtime.iISession session)

: base(session) {

}

/// <summary>

/// Reads a selected number of rows from a table

/// </summary>

public virtual void ReadTable(string
QUERY_TABLE,

int ROWCOUNT, int
ROWSKIPS,

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 27

ref ERPLink.Runtime.RfcTable<TableData> DATA, ref
ERPLink.Runtime.RfcTable<TableFields> FIELDS)

{

ERPLink.Runtime.IRfcRequest request =
this.Session.CreateRfcRequest("RFC_READ_TABLE");

request.SetValue("QUERY_TABLE", QUERY_TABLE);
request.SetValue("ROWCOUNT", ROWCOUNT);
request.SetValue("ROWSKIPS", ROWSKIPS); request.SetValue("DATA",
DATA); request.SetValue("FIELDS", FIELDS);
ERPLink.Runtime.IRfcResponse response = request.Execute(); DATA =
response.GetTable<TableData>("DATA");

FIELDS = response.GetTable<TableFields>("FIELDS");

}

}

public class TableData : ERPLink.Runtime.RfcStructureBase {

/* Edited: TableData implementation */

}

public class TableFields : ERPLink.Runtime.RfcStructureBase {

/* Edited: TableFieldsimplementation */

}

}

Look at the generated ReadTable() method. Notice that unlike the original SAP RFC_READ_TABLE,
the parameters that were bound to nothing are not present, as desired.

Also note that in addition to the ERP-Link_BusinessObject1 class, two auxiliary classes have been
generated. Each of these classes corresponds to the structure of the elements of the DATA and FIELDS
parameters of RFC_READ_TABLE.

The generated ERP-Link_BusinessObject1 class has three constructors, each with a different set of
parameters. This pattern of three constructors is present in all generated ERP-Link information
objects. The choice of which constructor to use depends on the way an information object is
associated with the ERP-Link Connection Service connection pool that links it to the SAP system.

Constructor with No Parameters

If the connection pool doesn’t require authentication, use the first parameter-less constructor. That
is, in the code, write:
iNet_InfoObject1 myObj = new iNet_InfoObject1();

When created this way, an ERP-Link information object will obtain all of its configuration
information from the web.config or app.config file, and creates and configures an internal ISession
object.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 28

Constructor with SAP Credentials

If the connection pool does require SAP credentials, use the second constructor.

Note

The developer is responsible for obtaining and managing the SAP credentials in a secure
fashion.

iNet_InfoObject1 myObj = new iNet_InfoObject1(new SapCredentials(cli,

user, passwd, lang));

When created this way, an ERP-Link information object obtains its non-sensitive configuration
information from the web.config or app.config file, and supplements it with the sensitive SAP
credentials provided by the programmer. As in the parameterless case above, an internal ISession
object is created.

Constructor with Configured ISession

If an ISession object needs to be shared between several information objects, or if the programmer
wants complete control over the configuration of the ISession, use the third constructor. In this case,
the information object will not take ownership of the session, but instead will assume that the caller
is in charge of configuring and disposing of it properly:
iNet_InfoObject1 myObj = new iNet_InfoObject1(session);

Skinning the ERP-Link business object

Current best programming practices prescribe separating interface from implementation. This
practice is especially useful when programming using unit testing frameworks and test-driven
development (TDD). It is not practical to call a real SAP system using an ERP-Link business object in
the context of a unit test because the target SAP system might be offline or it might throw
unexpected exceptions that would interfere with the intended function of the unit test.

A common solution to this problem is to skin the object under test; that is, create a .NET interface
out of all publicly accessible methods and properties, and then have the ERP-Link business object
implement the interface:
public interface ITestable {

void ReadTable(string tabName, ref RfcTable<RFC_DATA> data);

}

public partial class iNet_InfoObject1 : ProxyInfoObject, ITestable { public void
ReadTable(string tableName, ref RfcTable<RFC_DATA> data) {

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 29

// implementation elided for clarity

}

}

Now, the unit test assembly can define a fake or mock class that also implements the ITestable
interface and simulates the actual behavior of the real ERP-Link business object:
public partial class FakeInfoObject1 : ITestable {

public void ReadTable(string tableName, ref RfcTable<RFC_DATA> data) {

// Simulation code elided for clarity

}

The unit test methods can now create instances of the fake class to simulate the ERP-Link business
object.

To skin an ERP-Link business object:

1. Launch the ERP-Link business object designer and select the Methods node. The Visual
Studio property grid will show the property InterfaceName.

2. Set this property to a non-blank value to generate a .NET interface with the same signature
as the public members of the ERP-Link business object.

Disposing of ERP-Link Information Object Proxies

After use, every ERP-Link information object proxy must be disposed of properly to release ERP-Link
Connection Service resources. Every ERP-Link information object proxy implements the .NET
System.IDisposable interface. When the proxy object is no longer needed, its Dispose() method
must be called to release the resources it holds onto. This applies to all ERP-Link information object
proxies, regardless of which constructor was used to create one.

In C#, the using syntax construct makes this simple:
using (iNet_InfoObject1 myObj = new iNet_InfoObject1()) {

myObj.CallSomeMethod();

}

The Dispose() method is called automatically when the using scope is left, even if an exception is
thrown by CallSomeMethod().

An alternative, more explicit (and verbose) way of achieving the same result is demonstrated below:
iNet_InfoObject1 myObj = null; try {

myObj = new iNet_InfoObject1();
myObj.CallSomeMethod();

} catch (Exception ex) {

/* Handle the exception (or not) */

} finally {

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 30

/* We arrive here even if an exception is thrown */ if
(myObj != null)

myObj.Dispose();

}

Using ERP-Link Information Objects

Assuming the configuration of an ERP-Link information object is correct, after the appropriate
constructor is called, it is now ready to use. The mode of use depends on what kind of ERP-Link
information object it is.

ERP-Link Business Object Sample Code Fragment

Example: Assume a developer is writing .NET code to display the details of a customer in the SAP
system in an ASP.NET page or a Windows form. The developer creates an ERP-Link business object,
and creates an RFC filter in the Connector Browser searching for BAPI_CUSTOMER_GETDETAIL. The
resulting RFC is dragged onto the ERP-Link business object designer.

In a separate C# file, the developer writes the following method:
public void DisplayCustomerDetails(string customerID) {

using (iNet_BusinessObject1 piNet_BusinessObject1 = new iNet_BusinessObject1()) {
BAPI_CUSTOMER_GETDETAIL_BAPIKNA101 PE_ADDRESS; BAPI_CUSTOMER_GETDETAIL_BAPIRETURN
RETURN;

string CUSTOMERNO = "";

piNet_BusinessObject1.BAPI_CUSTOMER_GETDETAIL(out PE_ADDRESS, out RETURN, customerID, "", "", "",
"");

// Obtained a customer’s info, display it.
myForm.LabelTitle.Text = PE_ADDRESS.FORM_OF_AD;
myForm.LabelFirstName.Text = PE_ADDRESS.FIRST_NAME;
myForm.LabelSurname.Text = PE_ADDRESS.NAME;

// ...etc

}

}

In this sample, myForm is an ASP.NET Page or a Windows form on which user interface labels are
located.

Assume a developer would like to use some data from a custom SAP table together with some
ADO.NET data. The developer creates an ERP-Link Table View and then creates a Table Viewer on
the (fictitious) SAP Table Z_TEST_TABLE in the Connector Browser, drags the Table Viewer onto the
Table View Editor. He gives the ERP-Link Table View the class name TestTableView.

In a separate C# file, the developer writes the following method.
public System.Data.DataTable ReadTestTableData() {

System.Data.DataTable table = new System.Data.DataTable();
TestTableView tableView = new TestTableView();

try {

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 31

tableView.Fill(table);

}

finally {

tableView.Dispose();

}

return table;

}

The method calls the Fill() method of the ERP-Link Table View, which creates a standard ADO.NET
DataTable and fills it with data from the SAP Table. The DataTable is then returned to the caller,
which uses the data in the DataTable.

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 32

Generating ERP-Link Code Snippets

ERP-Link Modeler supports the quick generation of small code segments, known as ERP-Link Code
Snippets that assist .NET programmers in writing code that calls remote SAP objects.

Business Object Code Snippets

Because some BAPI/RFC modules take a large number of input parameters, it can be quite tedious
to write a call to an ERP-Link business object method from scratch. This is especially true if a large
number of structures or tables are being used as parameters.

For convenience, the ERP-Link Modeler provides programmer assistance with the ERP-Link Code
Snippet function. Select the desired ERP-Link business object method, right-click and select Copy
ERP-Link Snippet. This will place some generated code on the clipboard. Now, switch to the
program calling the ERP-Link business object and paste the contents of the clipboard. The results
will be similar to the following:
#region ReadTable method call

iNet_BusinessObject1 piNet_BusinessObject1 = new iNet_BusinessObject1(); string
QUERY_TABLE = "";

int ROWCOUNT = 0; int
ROWSKIPS = 0;

TableData DATA = new TableData(); TableFields
FIELDS = new TableFields();

piNet_BusinessObject1.ReadTable(QUERY_TABLE, ROWCOUNT, ROWSKIPS, ref DATA, ref FIELDS);

#endregion

All scalar parameters are given default values, and all necessary structure or table parameters are
created. The code snippet can now easily be modified to change the actual parameter values as
appropriate.

Table View Code Snippets

Pregenerated calls to ERP-Link Table Views can also be obtained in a similar fashion by selecting an
ERP-Link Table View object in the Table View Editor, right-clicking on the selection, and selecting
Copy ERP-Link Snippet. This again places some generated code on the clipboard. When pasted
into a C# file, an ERP-Link Table View Code Snippet will look like similar to the following:
#region Reading from SAP Table KNA1

System.Data.DataTable table = new System.Data.DataTable();
HRLogic.KNA1 tableView = new HRLogic.KNA1();

try {

tableView.Fill(table);

}

finally {

tableView.Dispose();

4 February 2019

 ERP-Link Modeler Administration Guide V5.4.0 33

}

#endregion

SAP Query and SAP Report Code Snippets

Code snippets SAP Query and SAP Report information objects can also be obtained in a similar
fashion. To add code to call a Query or Report program, first select the Query or Report in question
in the Connection Browser, then right-click and select the Copy ERP-Link Snippet menu. Then,
switch to a C# or Visual Basic.NET source file and paste the contents of the clipboard. In a C# source
file, the result will look something like the following:
#region Execute SAP report ZEXTRACT_BALANCE
ERPLink.RFCConnector.ISession session =

ERPLink.Runtime.ConnectionProviderService.ConnectTo(
"PROVIDER=iNet.CS3;SERVER=?;POOLID=?");

ERPLink.InfoObjects.Runtime.ReportInfoObject report =
ERPLink.InfoObjects.Runtime.ReportInfoObject(session);

report.ReportName = "ZEXTRACT_BALANCE";
report.Variant = "TEST1";

System.Data.IDataReader reader = report.ExecuteReader();

#endregion

Note

The end result of the ExecuteReader() call is returned as a System.Data.IDataReader. The data
returned from the Query or Report can thus be accessed row by row by the user’s program. The
IDataReader can also be bound to ASP.NET controls like System.Web.UI.DataGrid for immediate
presentation.

	Introduction
	Intended Audience
	Intended Usage

	Overview
	About ERP-Link Objects

	Installation
	Configuration
	Using the Modeler
	Selecting the Connection to SAP System
	Browsing SAP Business Objects and BAPIs
	Creating Remote Function Call Filters
	Browsing Tables
	Searching with the Table Browser
	Viewing Tables
	Browsing SAP Queries
	Browsing SAP Report Programs

	Using the ERP-Link Business Object Designer
	Creating ERP-Link Business Objects
	Adding BAPI/RFC Modules to an ERP-Link Business Object
	Deleting Methods from an ERP-Link Business Object
	Renaming Methods and Other Elements
	Binding Method Parameters and Properties

	Using Structures and Tables
	Understanding Documentation and IntelliSense™
	Using the Test Runner
	Using the Table View Editor
	Creating a Table View
	Modifying a Table View

	Using ERP-Link Information Objects in Your .NET Project
	Using the ERPLink.Runtime Assembly
	Performing Runtime Configuration of ERP-Link information Objects
	Understanding Generated ERP-Link Business Object Proxy Source Code
	Constructor with No Parameters
	Constructor with SAP Credentials
	Constructor with Configured ISession
	Skinning the ERP-Link business object
	Disposing of ERP-Link Information Object Proxies
	Using ERP-Link Information Objects
	ERP-Link Business Object Sample Code Fragment

	Generating ERP-Link Code Snippets
	Business Object Code Snippets
	Table View Code Snippets
	SAP Query and SAP Report Code Snippets

